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Cyber-physical systems (CPS) are interconnected systems of sensors and computing devices that sense and collect

information about the physical world, and in turn operate on this sensed information to interact with and influence the

physical world. Application domains of CPS range from healthcare in the form of implantable medical devices such as

defibrillators and pacemakers [1, 2], agriculture where sensors and satellites monitor and regulate soil and crop activity [3],

and transportation and aerospace in the form of assisted driver autonomous systems (ADAS), unmanned aerial vehicles

(UAVs) and drones [4, 5]. These systems harness the power of compute to enrich our experiences with the physical world

and have the potential to solve important societal challenges such as mitigating climate change [6, 7]. As we continue to

entrust more parts of our lives to CPS, it is imperative that the underlying hardware and software computing systems

on which these CPS rely on are designed correctly for safe operation. However, what constitutes correct system design

differs between manufacturers that design and distribute the systems and CPS domains that use these systems. For

manufacturers, producing correct values for all deployed software constitutes as correct design, whereas in safety-critical

CPS domains, producing correct values and the time it takes to produce the correct values (timing predictability) constitute

as correct design. As a concrete example, in ADAS, the time taken to correctly detect and classify objects on the road

affects the engagement and execution of collision avoidance maneuvers, and hence, affects the safety of passengers. This

notion of time as a first-class design principle for computing system design introduces challenges to conventional design

processes and methodologies. Meeting these challenges through novel design strategies where time is a first-class design

principle while accommodating and integrating conventional design methodologies are crucial to sustaining the tremendous

potential benefits that CPS offer and accelerating their deployment and outreach in our lives and society at large.

I am a hardware and software systems researcher whose research primarily looks at the design of efficient computing

systems for CPS. Specifically, my research focuses on designing timing predictable and high-performance compute systems

for CPS . Timing predictability is crucial for correct and safe operation for CPS. Growing complexity of services deployed

on CPS and demand for more autonomy via machine learning have raised the high-performance requirements of the

computing systems used by CPS [8, 9]. However, designing for timing predictability focuses on and optimizes for worst-

case scenarios, whereas designing for high-performance focuses on and optimizes for average-case scenarios. This makes

timing predictability and high-performance conflicting design goals. For example, research works have shown that design

features in commercially available computing systems that are responsible for fast execution of average-case scenarios are

also responsible for significantly slowing down execution of worst-case scenarios, which can compromise safe execution for

safety-critical CPS [10]. Disabling these performance features for improved timing predictability or designing solely for

timing predictability are shortsighted approaches that ignore the growing integration of machine learning with CPS and

the multitude of opportunities that this integration provides. To this end, my research philosophy in CPS is on designing

computing systems that strike a balance between timing predictability and high-performance. My research approach has

two steps: (1) building timing analysis models to identify barriers to predictability in current systems design, and (2) using

insights derived from the timing models to propose design methodologies that balance predictability and high-performance.

My dissertation research focused on data communication mechanisms between multiple applications, which is a critical

component of computing system design [11, 12, 13, 14, 15, 16]. Outside of my dissertation research, I have applied this

philosophy to other components of compute system design such as memory controllers [17, 18], cache controllers [19] and

more recently, instruction scheduling and execution in graphics processing units (GPUs) [20].

Dissertation Research: Predictable Data Communication

Software applications deployed on CPS such as those from machine learning, computer vision, and scientific computing

domains exhibit increasing data and task parallelism [21], growing amounts of data processed and manipulated [22, 23], and

frequent data communication [24, 25]. To meet these application requirements in a safety-critical setting, there is a large

body of research devoted towards improving the timing predictability of multi-core platforms, GPUs, and multi-processor

system-on-chips (MPSoCs), which has helped paved the way for their increasing adoption in CPS [26]. The crux of the low

timing predictability of these platforms is the timing interference from shared hardware resources such as shared memory

units (caches, main-memory) and interconnects that are accessed simultaneously by multiple applications executing on

the platform. Data communication between applications executing on different compute units further compounds the low

timing predictability as data communicated from one application to another must take into account timing interference

from shared hardware resource accesses and the state of the communicated data.

For my dissertation, I focused on exploring hardware cache coherence mechanisms as a solution to facilitate predictable

and high-performance data communication in CPS. At a high level, hardware cache coherence enables multiple cores to

correctly access the most up-to-date shared data, and allow multiple cores to simultaneously cache shared data in their

private cache memories. This hardware mechanism works transparent to the software application, and allows applications
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running simultaneously on different compute units to communicate data correctly without duplicating data or imposing

constraints on data caching and placement. My dissertation research focused on the following questions: (1) What are

the sources of timing interference when using hardware cache coherence?, (2) What design guidelines must be followed

to build predictable hardware cache coherence mechanisms?, and (3) What are the key design ingredients that impact

performance and predictability in hardware cache coherence and how best to reconcile them?. Exploring these questions,

I proposed design methodologies and analyses frameworks [11, 12, 13, 14] and design tools to build predictable cache

coherence mechanisms [15, 16]. To the best of my knowledge, the research works constituting my dissertation were the

first to explore design methodologies and analyses frameworks for predictable hardware cache coherence, and have fostered

further research in this area [27, 28, 29, 30, 31, 32, 33]. Below, I expand on the main components of my dissertation.

Establishing design invariants and guidelines [11, 12]: The first set of works analyzed potential timing issues that

can arise from using hardware cache coherence mechanisms and established a set of design guidelines that addressed these

issues. Specifically, I analyzed scenarios of unbounded execution time that can arise using an abstract cache coherence

model. These scenarios were constructed based on the state of communicated data, the access patterns on communicated

data (read/write), and the state of the shared resources (interconnects and memory units). The key contribution of

these works was the establishment of a set of design invariants that guide the design of a predictable cache coherence

mechanism. The rationale behind establishing design invariants rather than imposing a specific implementation were

twofold. First, design invariants offer flexibility on the implementation, which opens up design space exploration based

on the requirements and deployment of the CPS. Second, given the implementation details of an existing cache coherence

implementation, the design invariants can serve as a checklist to determine the predictability of the implementation.

These design invariants laid the foundation for the rest of the works in my dissertation.

Using these design invariants, I developed timing predictable variants of existing high-performance implementations

such as predictable modified-shared-invalid (PMSI), predictable modified-exclusive-shared-invalid (PMESI), predictable

modified-owned-exclusive-shared-invalid (PMOESI) cache coherence mechanisms. For each of these implementations, I

derived the worst-cast data communication latency using formal timing analysis methods. Empirical evaluation with real-

world workloads and synthetic workloads that stress the worst-case scenarios showed that the observed worst-case data

communication latency were within the computed worst-case bound derived from the formal timing analyses. Performance

evaluation showed that predictable cache coherence mechanisms offered significant performance advantages (upto 4×)

over existing approaches while still being predictable. In summary, this set of works showed that high-performance and

predictable hardware cache coherence mechanisms can be designed to facilitate data communication in CPS.

Balancing predictability and performance [14]: A key concern that arose from the first set of works was that ap-

plications under predictable cache coherence mechanisms incurred higher worst-case execution times (WCETs) compared

to existing approaches. To put this in perspective, for an 8-core platform, I showed that the data communication latency

under predictable cache coherence is 16× higher compared to other approaches (from static timing analyses) with a

5× performance speedup benefit (from empirical evaluation). Despite the stellar performance benefits predictable cache

coherence mechanisms offered, this high WCETs threatened any potential for their adoption in CPS.

To this end, I focused on understanding the design ingredients responsible for this high worst-case data communication

latency under predictable cache coherence mechanisms and design strategies to reduce this communication latency while

guaranteeing performance. The key contribution of this work was a systematic approach that defined a formal model of a

cache coherence mechanism and the application of this model to identify the key design ingredients that contribute to high

worst-case communication latency. A novelty of the formal model was a timing analyses based on worst-case asymptotic

latency where the communication latency is expressed as a function of core count. Such a timing analyses is beneficial

to capture first-order behavior of a mechanism without requiring detailed information about the implementation. Using

the insights derived from the formal model, I explored one design technique that focused on changes to the underlying

cache coherence protocol state machines; I explored another design technique to achieve the same with my co-authors

in [34]. The resulting predictable cache coherence mechanisms, referred to as linear cache coherence mechanisms, traded

minor performance to achieve the same worst-case communication latency as existing approaches. Empirical evaluation

showed that linear cache coherence mechanisms sacrificed at most 13% performance compared to the original predictable

cache coherence mechanisms for a 94% reduction in worst-case latency for an 8-core compute system model. In summary,

I showed that a systematic approach to predictable cache coherence design can result in minimizing the worst-case

communication latency and improve their prospects for adoption and implementation in computing systems for CPS.

Designing for mixed-criticality CPS [13]: CPS such as advanced driver-assistance systems deploy a multitude of

applications on the compute platform that have varying requirements on timing predictability and performance [35]. For

instance, these applications range from media applications such as in-car entertainment that have low requirements on

timing predictability or low-criticality but benefit from high-performance to applications such as object avoidance and

tracking that have strict predictability requirements or high-criticality. Handling predictable data communication on

mixed-criticality CPS introduced an additional challenge wherein data communication between mixed-criticality applica-

tions must not result in timing interference to the high-criticality applications [36, 37]. To this end, I developed CARP,
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a novel criticality-aware predictable cache coherence mechanism that facilitated data communication between different

criticality levels while satisfying this mandate. The key design novelty of CARP was that coherence state transitions were

triggered on both the operation type (read/write) and the criticality levels of the applications performing the operations.

Infusing the cache coherence protocol state machine with information on criticality levels required micro-architectural ex-

tensions and state machine changes. CARP prioritized data communication from high-criticality applications, and hence

ensured that latency of communication initiated by high-criticality applications was independent of the communication

from low-criticality applications.

Design tools, proof-of-concepts, and open-source artifacts [15, 16]: Designing a hardware cache coherence mech-

anism for CPS is a complex design exercise as it requires a designer to carefully reason about correctness, predictability

and high-performance. To ease this complex design exercise, I consolidated the design insights and formal models pro-

posed in my research so far into Synthia, an automated tool to construct predictable and high-performance hardware

cache coherence protocol state machines. The key objective of Synthia was to improve designer productivity and facil-

itate design space exploration of predictable cache coherence protocol state machines. Synthia took as input a simple

specification of protocol state machine devoid of any predictability and performance features, and produced a correct,

predictable, and high-performance cache coherence protocol state machine. To put into perspective Synthia’s benefits,

Synthia took a specification of a cache coherence protocol deployed in a commercial multi-core processor that consisted of

25 state transitions and generated a predictable and high-performance protocol state machine with 118 state transitions

(more than 4× the number of the transitions). I evaluated Synthia with several cache coherence protocol specifications,

and the corresponding output protocol state machines were subjected to verification for correctness and empirical eval-

uation for predictability and performance. I also co-developed MapleBoard [34], a predictable and open-sourced RISC-V

multi-core hardware test-bed for deploying and evaluating predictable cache coherence mechanisms. The key objective of

MapleBoard was to provide researchers a FPGA-based test bed for rapid exploration, implementation, and evaluation of

predictable cache coherence mechanisms.

A core tenet of my research philosophy is making all of my research open-source and available for public use. I

have open-sourced research artifacts such as the micro-architectural simulator used to implement and evaluate proposed

mechanisms, benchmarks, and tools such as Synthia and MapleBoard. Making research artifacts available for public use

helps disseminate research ideas and methodologies, encourage further contributions that expand the research area, and

opens up opportunities for discussions with manufacturers and stakeholders regarding the adoption and integration of

proposed designs in future compute platform offerings.

Future Research Agenda

Exploring memory models for CPS: CPS exhibit diverse data communication patterns and scenarios between de-

ployed applications [24]. This diversity arises from data placement, data and task dependencies, criticality levels, and task

execution constraints. Abstracting away this diversity, data communication fundamentally reduces to reads and writes on

data that reside in shared memory. One area of future research focuses on exploring memory consistency models for CPS

that specify the accepted behavior of tasks operating on shared data. The main motivation for this research focus is that

existing approaches to handling data communication in CPS must work within the confines of the memory model defined

by the underlying computing system. As with most micro-architectural performance features on existing computing sys-

tems, these memory models are also designed with performance in mind to allow flexible reordering of reads and writes

to shared data [38]. A memory consistency model appropriate for CPS can offer some relaxations in ordering of reads

and writes to shared memory based on certain properties of the shared data and task. Such a memory consistency model

for CPS has the potential to open up several design opportunities for data communication. In the future, I will look into

exploring the applicability of existing relaxed memory consistency models for CPS, and explore new memory models that

better suit the data communication patterns in CPS. It is important to note that designing a memory consistency model

has ramifications to the micro-architecture and instruction set architecture (ISA) in the form additional instructions to

enforce ordering and visibility of updates to shared memory. Hence, a key objective of this exploration will be to design

memory models on which existing software architectures and methodologies can be applied as-is and at the same time,

explore alternate software methodologies that make use of the proposed memory model features.

Designing predictable MPSoCs: Heterogeneous MPSoCs integrate multiple compute cores, GPUs, programmable

FPGAs and custom machine learning compute engines onto a single compute platform [39]. There is growing adoption of

such platforms in CPS as they cater to a myriad of different application deployed on CPS [40, 41]. However, heterogeneous

MPSoCs bring unique challenges to predictability. Specifically, I am interested in two research areas. First, GPUs on

heterogeneous MPSoCs have been shown to exhibit low timing predictability making their adoption a serious concern

[42, 43]. The low timing predictability arises from certain implementation details arising from single-instruction-multiple-

data instruction execution [20] along with the presence of shared hardware resources such as cache memories, interconnects,

and shared memory [44]. There is rich body of research work that focuses on improving the timing predictability of COTS
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GPUs through reverse-engineering micro-architectural details [45, 46] and software approaches through programming

models and driver intervention [47]. A recent work with my co-authors looked at improving the predictability of GPUs

through a combination of micro-architectural extensions and compiler optimizations [20]. In this work, we looked at the

impact of branch-divergence on WCET and proposed micro-architectural extensions to reduce their impact to WCET.

Branch divergence happens when a group of threads executing in lockstep encounters conditional statements that result

in converting the lockstep execution into a serialized execution. Motivated by this work, in the future, I will continue look

into exploring and improving the predictability of GPUs. My previous research on GPU software design [48, 49, 50, 51]

and industrial experience in compiler design for high-performance GPUs make me well suited for research in this area.

Second, the heterogeneous processors on an MPSoC share the main-memory and applications running on different

processors can communicate data with each other. Heterogeneous processors implement different cache hierarchy designs

and have different sensitivities to communication latency and throughput [52, 53, 54]. As a result, predictable cache

coherence and memory consistency models need to be designed that take into account this heterogeneity. In the future,

I am interested in building on the design insights derived from my dissertation towards building novel predictable cache

coherence models and memory consistency models for predictable heterogeneous MPSoCs.

Optimizing on-chip data movement: A common application characteristic underlying both safety-critical applications

and high-performance compute applications is the increasing volumes of data accessed and operated on by compute

agents. This increasing volume of data stresses the on-chip interconnects and cache hierarchies resulting increased power

consumption and performance penalties. This application trend requires novel micro-architectural solutions in the memory

hierarchy that reduces data movement and improves the utility of the cache hierarchy for these applications with large

data footprint. During my dissertation, I worked on a novel hardware data-dependent prefetcher for graph analytics called

Gretch [55]. Data accesses in graph analytics comprise of data-dependent accesses and these accesses have low spatial and

temporal reuse [56]. Gretch was a novel hardware data-dependent prefetcher that identified data-dependent accesses and

scheduled prefetches for data-dependent accesses into the cache hierarchy. In the future, I will look into opportunities for

designing micro-architectural extensions that improve on-chip data movement and cache usage for emerging workloads in

the area of machine learning and data analytics. In the machine learning domain, I am keen to apply my experience with

improving the performance of graph analytics on graph neural networks (GNNs). Specifically, I am interested in looking

at leveraging application knowledge to infuse semantics of data operations into the memory hierarchy. This information

can be leveraged by a programmable micro-architectural extension in the memory hierarchy to better manage on-chip

data movement.

Conclusion

Design of efficient hardware and software compute systems is vital to sustain the current machine learning revolution.

Each component of the compute stack starting from the high-level language design, compiler framework, operating system,

and micro-architecture is crucial towards sustaining this revolution. I have been fortunate to perform research in compute

systems spanning breadth in terms of different areas of compute systems deployment (CPS and high-performance compute

systems) and depth in terms of different components of the compute stack (software frameworks, compiler design, micro-

architecture). My aim through my research is to contribute to this revolution by exploring design methodologies to

build efficient hardware and software compute systems, and in the process, help build a future where better and efficient

computing systems can solve the big challenges facing humanity.
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QorIQ T4240. In Marcus Völp, editor, 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020), volume

165 of Leibniz International Proceedings in Informatics (LIPIcs), pages 13:1–13:22, Dagstuhl, Germany, 2020. Schloss

Dagstuhl–Leibniz-Zentrum für Informatik.
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